
J O U R N A L  OF M A T E R I A L S  S C I E N C E  12 ( 1 9 7 7 )  5 4 3 - 5 4 8  

An analysis of reaction diffusion in 
non-metal systems 

metal- 

J. COLWELL, G.W. POWELL 
Department of Metallurgical Engineering, Ohio State University, Columbus, Ohio, USA 
J.L. R A T L I F F  
Department of Structures, Materials, and Fluids, University of South Florida, Tampa, 
Florida, USA 

The formation of a single Mx N v intermediate phase in a metal-non-metal system is 
governed by two parabolic growth regions if the metal side of the couple is finite in 
extent and initially unsaturated with non-metal. The first parabolic region is described 
by semi-infinite conditions on the metal side of the couple, while the second is according 
to saturated conditions. The intermediate phase reaction layer grows non-parabolically 
when conditions are such that the concentration profile cannot be described by either 
semi-infinite or saturated conditions on the metal side of the couple. Expressions have 
been obtained relating the growth constants to diffusion coefficients and information 
from an equilibrium phase diagram. The mathematical formulation of the problem was 
tested by application to the titanium-carbon system. The diffusion coefficient of carbon 
in titanium carbide was found to be in close agreement with values reported elsewhere in 
the literature. 

1. Introduction 
The kinetics of the growth of a single intermediate 
phase, MxNy , as a result of reaction diffusion be- 
tween a metal, M, and a non-metal, N, can be for- 
mulated quite readily if either one of two condi- 
tions is fulfilled: 

(1) the metallic phase is initially pure M or un- 
saturated with respect to the non-metal and also 
semi-infinite [1,2] ; or 

(2) the metallic phase is saturated initially with 
the non-metal [1 ,3] .  
One may anticipate that the rate of growth of the 
intermediate phase will be faster in the latter case 
because there is no flux of non-metal into the 
metallic phase. But, in both cases, the thickness of 
the metallic phase varies parabolically with time. 

If the metallurgical history of an M-N couple 
covers a time range which includes both the semi- 
infinite and saturated cases for short and long 
diffusion times, respectively, then it follows 
that non-parabolic growth of the intermediate 
phase must be observable during some finite time 
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interval. The objectives of this research were to 
obtain a mathematical description of the growth 
of the intermediate phase that includes both 
parabolic stages as well as the connecting non- 
parabolic stage and to test this analysis using data 
available in the literature on the growth of TiC in 
Ti -C couples. In this particular metal-non-metal 
system, the mobility of the non-metal is orders of 
magnitude greater than that of the metal and, 
therefore, the mathematical description of the 
growth of the TiC phase involves only the diffusi- 
vities of carbon in TiC and Ti, i.e. Dc Tic and 

D~. 
2. Description and analysis of the problem 
The analysis is based on the following assumptions 

(1) the growth of the intermediate phase, MN, 
occurs by displacement of the MN/M interface. 
The non-metal diffuses through the MN layer to 
the MN/M interface where some of the non-metal 
reacts with M to form MN and the remainder 
diffuses into the metallic phase ifM has not reached 
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saturation with respect to the non-metal through- 
out its extent. 

(2) the concentration gradient within the 
intermediate phase is linear; 

(3) the diffusivities of the non-metal in the 
intermediate phase, DN MN, and in the metal, 
D ~ ,  are independent of concentration; and 

(4) local equilibrium is maintained at the 
N/MN and the MN/M interfaces. 
These assumptions are very reasonable and have 
been shown to be valid in cases of reaction diffu- 
sion involving the growth of carbide [4, 5] and 
silicide [6,7] layers. The semi-infinite and 
saturated cases of growth will be considered 
first and then the more general analysis which 
covers both of these cases will be presented. 

2.1. Case I: growth of the MN layer during 
the time interval within which the 
metal side of the couple remains semi- 
infinite 

When an M-N couple is fabricated using pure 
or unsaturated M, the metal phase will be semi- 
infinite during the initial period of diffusion. The 
duration of this period depends upon the length, 
L, of the metal side of the couple. 
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Figure 1 Relationship between the concentration- 
penetration diagram and the phase diagram for reaction 
diffusion in a metal-non-metal system. 
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As shown in Fig. 1, the homogeneity range of 
the intermediate phase, MN, is K1, the concentra- 
tion difference at the MN/M interface is K2, and 
the difference between the saturation limit of the 
non-metal in the metal and the initial concentra- 
tion of non-metal in the metal is K3. The units of 
concentration of gcm -3. A small displacement, 
dX1, of the MN/M interface during the time 
increment, dt, results in the accumulation, A, of 
non-metal in the MN layer that is given by the 
expression 

A = �89 +K2dX1 (1) 

and, furthermore, the conservation of non-metal 
requires that 

A = �89 +K2dX1 = (Jinto--Jou0 dt (2) 

where Jinto is the flux of non-metal into the MN 
layer at x = 0 and Jout is the flux of non-metal 
through the MN/M interface and into the metal 
side of the couple. 

= O MN{KI~ (3a) 

J o u t  = --DM(OCM) 
t -aVx i .  : x ,  

(3b) 

The concentration gradient in Equation 3b may 
be evaluated from the solution to Fick's second 
law for semi-infinite boundary conditions [8]. 

2K3 f0 q _ dq (4a) C ta = C2 -x/----~ e q~ 

where 

X 

q - 2x/(DMt) (4b) 

Therefore, 

--- - 4(rm t)(5) 

This expression may be substituted for the gradient 
in Equation 3b provided that X1 ~ L. This con- 
dition is normally applicable because the thickness 
of the reaction layer is usually very small in com- 
parison to the length, L, of the metal side of the 
couple. Substitution of the flux expressions into 
Equation 2 yields 



~KldX1 + KzdX1 = 

K1 /( Dt~] ]dt. (6) 

It can be shown by assuming a solution of the 
form X N = k=t to this equation that the growth of 
the MN layer is parbolic, i.e. 

X] = k~t. (7) 

Substitution of the expression into Equation 6 
yields the following expression for the growth con- 
stant. Ij(o ) 

(i.e. the MN/M interface) must be obtained from 
the solution to Fick's second law subject to the 
following boundary conditions: 

Cxl,t = Ca fort~>0 ( l la )  

Cx, o = C3 forX1 <~x<~L ( l lb)  

= o. ( l lc)  

L , t  
Again utilizing the reasonable condition that 
X, ~ L, the solution is 

CM = C2 4K3 ~ l [ (2n--1)I lx  ] 
- ~ ~=,i2n- - ~ -  1) sin ~s 

[ (2n-1)2II2D~t] (12) 
exp 4L 2 

+ +Ka ;L)JJ (8) 

2.2. Case I1: growth of the MN layer when 
the metal side of the couple is satu- 
rated initially with non-metal 

For this case, one may simply repeat the above 
analysis but with Jout = 0 and K3 = 0. The growth 
of the intermediate phase again is parabolic, i.e. 

X] = kst (9) 

where 

2D~NK, 
ks - �89 +K= " (10) 

This growth constant also may be determined 
directly from Equation 8 by the substitution of 
K3 = 0. 

2.3. Case II1: growth of the MN layer when 
the metal side is initially unsaturated 
with the non-metal and also of finite 
length 

In this situation, the initial growth of the inter- 
mediate phase will be parabolic with the growth 
constant, k=, given by Equation 8 and the final 
stage of growth also will be parabolic but with a 
growth constant, ks, given by Equation 10. There- 
fore, a period of non-parabolic growth must exist 
between the initial and final parabolic stages of 
growth which occur at different rates. 

In order to described mathematically the com- 
plete range of growth behaviour, the concentration 
gradient of the non-metal in the metal at x = XI 

and, therefore, the concentration gradient in the 
metal at the MN/M interface is 

( cM t ~--x )==x, -~ _ _  - \  3 x  /==0 

2K3 ~ exp[  (2n--1)2II'D~t] (13) 
L n= 1 4 L2 

Substitution of Equations 3a and b into Equation 
2 yields the differential equation governing the 
growth of the intermediate phase subject to the 
boundary conditions stated above. 

�89 dX1 + KEdX, = "-'N ~-~, ) 
L \ - -  / 

4L 2 ~ t} ]d ,  (14) 

It should be noted that this equation describes 
case II layer growth when K3 = 0 and, also be- 
cause of its more general nature, describes layer 
growth under case I as well. A closed form 
solution to this equation cannot be obtained 
because of the mathematical singularity at the 
origin (X1 = 0, t = 0). Consequently, numerical 
methods, the details of which will be described 
below, must be used to obtain a solution. Depen- 
ding upon the information which is avialable, 
Equation 14 may be used in a variety of ways. For 
example, if D ~  N and D~  are known, the time 
required to produce a layer of a given thickness 
may be calculated. On the other hand, if only one 
diffusion coefficient is known and some X1 versus 
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t data are available, the magnitude of the unknown 

diffusion coefficient may be determined. The 
latter approach was utilized in this research. 

X 1 AX 1 =: 

where 

3. Resu l t s  and discussion 
The following discussion is concerned mainly with 

the numerical solution of Equation 14 and its 
application to the prediction of the kinetics of 

layer growth in metal -non-metal  systems. The 
efficacy of the analysis was established using data 
available in the literature on the T i - C  system. 

The kinetics of the growth of the intermediate 

phase TiC in Ti-graphite couples have been inves- 
tigated experimentally by Vansant and Phelps [9]. 
These researchers assumed that the layer growth 
was parabolic and employed an analytical ap- 
proach suggested by Wagner to obtain values of 

the diffusion coefficient of carbon in titanium 
carbide, i.e. Dc Tie. The primary objective of this 

research was to re-analyse the experimental data of 
Vansant and Phelps using Equation 14 which does 

not involve an assumption relative to the kinetics 

of layer growth, e.g. parabolic behaviour. 
The numerical solution of Equation 14 is facili- 

tated by rewriting the equation in finite difference 

form, 

IW, DMN--w2DMXI~'. e-[3nt]At (15) 

W1 g 1 
�89 + K 2 '  (16) 

and 

2K3 
W2 (�89 + K2)L ' (17) 

(2n -- 1)2II2DN M 
~3n = 4L 2 (18) 

Using the growth data of Vansant and Phelps, the 
values of D ~  i determined by Wagner et al. [10] 

and the solubility limits reported by Cadoff and 
Nielsen [11] and Brukl [12], values o f D ~  c were 

obtained from Equation 15 using a computer 
program which consisted of the following steps: 

(1) A set of experimental values of X1 and t, a 

value of D Ti corresponding to the reaction tem- 
perature and an assumed value of D~ ic were sub- 

stituted into Equation 15. 
(2) Using time increments, At, of 0.05 h, com- 

puted sets of X l , t  data were generated for the 
times t -- At, t -- 2At, etc. The correctness of the 
assumed value of D~ ic was judged by the extent to 

which the computed value of XI at t = 0 .05h 
deviated from zero. 

(3) Steps 1 and 2 were repeated until a value of 
D~ ic which yielded a value X1 less than or equal 
to 5x  10 -s cm at t = 0 . 0 5 h  was selected. Refer- 
ence is made at this point to the fact that the 

origin (X1 = 0, t = 0) cannot be used in the com- 
putation because of the mathematical singularity 
in Equation 15). 

(4) The value of D Tic obtainted in step 3 was 

used to generate layer growth data from t = 0.05 h 
to 100h. 

TAB L E I Comparison of numerically computed values of D ~12 with the values obtained by Vansant and Phelps [9] 

Couple Reaction conditions TiC layer D ~c (cm 2 h_l) 
number thickness X 104 (cm) 

Temp. (~ Time (h) [9] * Equation 15 

1 1090 4 1.0 
2 1288 2 12.7 
3 1288 4 18.0 
4 1288 4 15.4 
5 1288 4 10.2 
6 1288 8 26.4 
7 1305 8 29.5 
8 1488 1 24.9 
9 1488 2 37.6 

10 1488 2 37.0 
11 1488 2 28.2 
12 1488 4 61.5 
13 1488 8 85.0 
14 1488 10 89.2 
15 1505 4 68.6 
16 1505 4 60.5 

*Calculated from DC Tic = 360 exp (--62 000/RT) cm 2 h -~ . 

4.14 X 10 -8 2.92 X 10 -8 
7.52 X 10 -7 1.16 X 10 -6 
7.52 • 10 -7 8.36 X 10 -7 
7.52 X 10 -7 6.24 X 10 -7 
7.52 X 10 -7 2.95 X 10 -7 
7.52 X 10 -7 7.65 X 10 -7 
9.33 X 10 -7 9.33 X 10 -~ 
7.28 X 10 -6 6.00 X 10 -6 
7.28 X 10 -6 6.02 X 10 -6 
7.28 X 10 -6 5.84 X 10 -6 
7.28 X 10 -6 3.43 X 10 -~ 
7.28 X 10 -6 7.56 X 10 -6 
7.28 X 10 -6 7.02 X 10 -~ 
7.28 X 10 -6 6.I5 X 10 -6 
8.62 X 10 -6 9.35 X 10 -6 
8.62 X 10 -6 7.29 X 10 -6 
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Figure 2 Titanium carbide reac- 
tion layer growth behaviour pre- 
dicted by Equation 15 at 1488 ~ C 
from experimental data obtained 
by Vansant and Phelps [91. 

(5) Another set of data (X~, t, D~ i) was selec- 
ted and the above process repeated. 

A comparison of the values ofD~ ic obtained by 
this technique with those reported by Vansant and 
Phelps is presented in Table I. The agreement is 
quite good, the expressions for the temperature 
dependence of D Tic being 

-620001 h-' Dc Tic = 360exp R T  ] cm= [9] 

(16a) 
and 

I  s-5~176 
D~ ic = 1010 exp R T  ] cm2 

(this work). (16b) 

Fig. 2 illustrates the numerically computed 
growth behaviour of a TiC layer at 1488 ~ C. The 
data points were obtained by starting the numeri- 
cal solution of Equation 15 at the data point 
reported by Vansant and Phelps for couple 12 
(Table I). Note that the growth of the intermediate 
phase is suggestive of both case I and case II con- 
ditions. The region of case II parabolic growth, i.e. 
metal side of the couple saturated with non-metal, 
is particularly evident. The growth constant as cal- 
culated for this region by the numerical analysis is 
k s = 10 x 10 -6 cm 2 h-~m which agrees exactly 
with the theoretical value predicted by Equation 
10. The region of case I parabolic growth, i.e. 
metal side of the couple is semi-infinite, is not as 
evident as the case II region because of the short 
length (0.254 cm) of the metal side of the couple. 
A reference line for parabolic growth subject to 
case I conditions is superposed on Fig. 2; the slope, 

k = 4 . 9 x  10 -7 cm 2h - I ,  of this line was calcu- 
lated from Equation 8. Although case I growth is 
not distincly delineated in Fig. 2, it is apparent 
that layer growth is not uniformly parabolic. Simi- 
lar patterns of growth behaviour were noted tbr 
the other sets of data points obtained by Vansant 
and Phelps (Table I). If one assumes that the 
growth of the TiC layer is uniformly parabolic 
from the origin (dashed line in Fig. 2), then an in- 
correct value of the growth constant is obtained. 
Thus, Vansant and Phelps, who utilized this pro- 
cedure, obtained a value of 8.6 x 10 -6 cm 2 h -1 for 
k s at t488~ whereas the present numerical ap- 
proach yields a value of 10 x 10 -6 cm 2 h -* and, 
consequently, by use of Equation 10, a more 
accurate value o fD~ ic. 

In order to reveal more clearly the non- 
parabolic transition between case I and case II con- 
ditions, the thickness of the layer as a function of 
time was numerically computed using Equation 
15 for various values of the length, L, of the metal 
side of the couple. It was assumed that at t = 
0.05h growth is subject to case I conditions; this 
assumption permitted a corresponding value of X1 
to be calculated. The results of these calculations 
are shown in Fig. 3 for the lengths L = 0.254, t.0 
and 2.0cm, respectively. When L = 0.254, the 
agreement between the experimental data and the 
computed curves is excellent. Thus, the numerical 
computation of growth data from Equation 15 
based on the initial assumption of case I parabolic 
growth at t = 0.05h is apparently justified. A 
comparison of the growth curves in Fig. 3 shows 
that the major effects of increasing the length, L, 
of the metal side of the couple are to lengthen the 
time interval over which the transition from case I 
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Figure 3 Titanium carbide reaction layer growth be- 
haviour predicted by Equat ion 15 at 1488 ~ C for various 
values of  L. 

to case II growth occurs and also the time interval 
of  case I growth. Clearly, the assumption of  uni- 
form parabolic growth is not warranted and will 
result in an erroneous value of  the growth con- 
stant. If  the metal is not saturated with the non- 
metal initially, the growth of  the intermediate 
phase is characterized by two parbolic stages and 
an intermediate transition stage. 

A transition time was arbitrarily established 
from X~I versus t plots at the point of  intersection 
of  the extrapolations of  the slopes describing semi- 
infinite and saturated growth regions. A plot of 
the transition time thus defined as a function of  
the square of  the length of  the metal side of  the 
couple for six values o f  L ranging from 0.254 to 
2.0 cm is linear. Such a plot may be useful in selec- 
ting a diffusion time for predominantly case I or 
case II growth for a given length of  the metal side 
of  the couple. 

4. Conclusion 
The growth of  an intermediate phase, M=Ny, in an 
M - N  diffusion couple will be parabolic if either 

(1) the metal side of  the couple is pure or unsatu- 
rated with the non-metal and also semi-infinite or 
(2) the metal is initially saturated with the non- 
metal. The kinetics of  growth are different for the 
two cases. If the metal side of an M - N  couple is of 
finite length and initially not saturated with non- 
metal, then both parbolic stages will be observed 
and a non-parabolic intermediate stage will be ob- 
served as well. A mathematical analysis which 
describes the complete range of layer growth is 
presented and its application to the growth of  TiC 
in Ti-graphite couples is discussed in detail. Values 
of  the diffusion coefficient of  carbon in TiC are 
obtained using this analysis and they compare ex- 
tremely well with data previously reported in the 
literature. 

References 
1. C. WAGNER, in "Diffusion in Solids, Liquids and 

Gases", edited by W. Jost (Academic Press, New 
York, 1960) pp. 6 9 - 7 5 .  

2. G .V.  KIDSON,J.  NucL Mats. 3 (1961) 21. 
3. L . S .  CASTLEMAN and L. L. SEIGLE, Trans. AIME 

212 (1958) 589. 
4. W. F. BRIZES, L. H. CADOFF and J. M. TOBIN, J. 

Nucl. Mats. 20 (1966) 57. 
5. R. RESNICK, R. STEINITZ and L. SEIGLE, Trans. 

Met. Soc. AIME 233 (1965) 1915. 
6. R.W.  BARTLETT,  ibm 236 (1966) 1230. 
7. R . W .  BARTLETT,  P. R. GAGE and P. A. LARS- 

SEN, ibid 230 (1964) 1528. 
8. L. S. DARKEN, "A tom Movements" ,  (American 

Society for Metals, Metals Park, Ohio, 1951) p. 1. 
9. C. A. VANSANT and W. C. PHELPS, Trans. ASM 59 

(1966) 105. 
10. F. C. WAGNER, E. J. BUCUR and M. A. STEIN- 

BERG, ibm 48 (1956) 742. 
11. I. CADOFF and J. P. NIELSEN, Trans. AIME 197 

(1953) 248. 
12. C. E. BRUKL, "Ternary Phase Equilibria in Tran- 

sition Metal-Boron-Carbon-Silicon Systems", part II, 
Volume VII, AFML - TR-65-2, Metals and Ceramics 
Division, Air Force Materials Laboratory, Wright- 
Patterson Air Force Base, Ohio (May, 1966). 

Received 17 February and accepted 10 June 1976. 

548 


